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The Building Performance Assessment
Team Process

In response to hurricanes, floods, earthquakes, and other disasters, the Federal Emergency
Management Agency (FEMA) often deploys Building Performance Assessment Teams (BPATs) to
conduct field investigations at disaster sites. The members of a BPAT include representatives of
public sector and private sector entities who are experts in specific technical fields such as
structural and civil engineering, building design and construction, and building code
development and enforcement. BPATs inspect disaster-induced damages incurred by residential
and commercial buildings and other manmade structures; evaluate local design practices,
construction methods and materials, building codes, and building inspection and code
enforcement processes; and make recommendations regarding design, construction, and code
issues. With the goal of reducing the damage caused by future disasters, the BPAT process is an
important part of FEMA's hazard mitigation activities.
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Pref ace
The Federal Emergency Management Agency (FEMA) Mitigation Directorate administers

the floodplain management provisions of the National Flood Insurance Program (NFIP). The
Federal Insurance Administration (FIA), also part of FEMA, administers the insurance provisions
of the NFIP. Together, the Mitigation Directorate and FIA have been involved in assessing the
performance of buildings affected by flooding. To date, FEMA has prepared over 25 building
performance assessment, damage assessment, and flood hazard mitigation reports. A list of these
reports is provided in Appendix A of this report Over ten thousand copies of FEMA's report on
Hurricane Andrew have been distributed, and the report has been cited by the national media
and used by State and local governments and model building code organizations as the basis for
changes to building codes and standards. The findings and recommendations of these reports
have been used by all levels of government to enhance the performance of buildings subject to
natural hazards.
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Executive Summary
On September 5, 1996, Hurricane Fran made landfall near Cape Fear, North Carolina (see

Figure 1-1 in Section 1), and generated considerable rainfall, moderately high winds, and storm
surge and waves along the coast. The National Oceanic and Atmospheric Administration
estimated that Hurricane Fran generated 1-minute sustained winds of 115 miles per hour. Storm
surge elevations approached or exceeded National Flood Insurance Program (NFIP) base flood
elevations from Kure Beach North, Carolina, to North Topsail Beach, North Carolina, along
approximately 50 miles of coastline. The recorded maximum high water, assumed to include wave
effects, was 15.4 feet above mean sea level (m.s.l.) at Kure Beach. Although the storm generated
high winds along the coast and well inland, severe damage to buildings was concentrated in those
areas also impacted by the flood surge and waves. This report focuses on the damages along the
North Carolina coast that resulted from flood surge, wave action, erosion, and scour.

On September 12, 1996, the Mitigation Directorate of the Federal Emergency Management
Agency (FEMA) deployed a Building Performance Assessment Team (BPAT) to coastal North
Carolina to assess damage caused by Hurricane Fran. The team was composed of FEMA
Headquarters and regional engineers, a State representative, a consulting structural engineer, a
consulting specialist in coastal construction and shoreline erosion, a consulting coastal engineer,
the Chief Underwriter of the NFIP, and an engineer from the Insurance Institute for Property
Loss Reduction. (See Appendix B for a list of team members.) Some members of the BPAT also
represented the American Society of Civil Engineers (ASCE) Committee on Flood-Resistant
Design and Construction.

The mission of the BPAT was to assess the performance of buildings on the barrier islands
most directly affected by Hurricane Fran and to make recommendations for improving building
performance in future events. Better performance of building systems can be expected when the
causes of observed failures are determined and repair and reconstruction are undertaken in
accordance with recognized standards of design and construction. The immediate goal of the
BPAT process is to provide guidance to State and local governments for post-hurricane
reconstruction. In addition, the BPAT's findings can enhance future coastal design and
construction.

The BPAT made its assessments by conducting site investigations to observe the condition of
buildings in selected areas affected by the storm. The scope of the BPAT process did not include
recording the numbers of buildings damaged by the hurricane, determining the frequency of
specific types of damage, or collecting other data that could serve as the basis of statistical
analyses. Collectively, the team invested over 600 hours of effort conducting site investigations,
inspecting damages, and preparing documentation. Documentation of observations made during
ground-level and aerial surveys included field notes and photographs.

The BPAT assessed the performance of primary structural systems of buildings, i.e., systems
that support the building against lateral and vertical loads experienced during a hurricane;
building extensions, such as decks, porches, and roof overhangs; nonstructural building
components such as breakaway walls and below-building concrete slabs; and on-site building
support utilities such as electrical, water, and sewage services. The team focused its efforts on
primary structural systems. It is extremely important to note, however, that damage to other
portions of buildings often contributed to the damage incurred by the primary structural systems.
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The building types observed were primarily one- and two-family, one- to three-story, wood-
frame structures elevated on wood pilings. Other types of construction observed included one-
and two-family wood-frame slab-on-grade houses, manufactured homes and permanently
installed recreational vehicles (RVs) on dry-stack masonry foundations, and a small number of
wood-frame structures elevated on solid-perimeter masonry walls. In general, wood-frame
structures elevated on piling foundations outperformed structures on all other types of
foundations (e.g., masonry pier, continuous masonry wall [crawl space], slab-on-grade) in
resisting flood effects, including velocity flow from storm surge, wave action, debris impact,
erosion, and scour. The team also observed two commercial structures: a hotel in which dry
floodproofing measures helped protect the building from flood damage and a large oceanfront
engineered concrete structure that performed well.

Coastal areas from Cape Fear to Cape Lookout experienced significant erosion and scour.
Erosion caused by Hurricane Fran was exacerbated by the previous dune erosion caused by
Hurricane Bertha, which made landfall in the same area only 2 months earlier. In many locations,
especially from Topsail Beach to North Topsail Beach, localized frontal dunes were eroded and
the beach profile was lowered 2 to 3 feet. Erosion of up to 4 to 6 vertical feet beneath oceanfront
homes was measured in many locations. In addition, localized scour measured at vertical
foundation members generally reached one to 1 to 1.5 times the diameter or width of the
member. Measurements of combined erosion and scour commonly totaled 5 to 7 vertical feet at
oceanfront homes in the area from Topsail Beach to North Topsail Beach. This erosion and scour,
added to the average long-term erosion rate of 1 to 2 feet a year, left many oceanfront homes
unable to withstand the loads experienced.

The combined effects of erosion and scour resulted in the collapse of well over 100
oceanfront homes with shallow piling foundation systems in the area from Topsail Beach to North
Topsail Beach. Several similar oceanfront homes were lost in the Kure Beach-Carolina Beach area.
The loss of supporting sand left many short pilings either completely exposed or embedded less
than 2 feet. In either case, some pilings gave way. As a result, the remaining foundation pilings
were overloaded and the elevated building collapsed. In those rare instances where oceanfront
homes were constructed on slabs-on-grade, the loss of supporting sand coupled with the impact of
velocity flow and breaking waves on the walls of the structures caused the structures to collapse.

The team observed very little damage in some areas, even oceanfront areas where velocity
flows, wave action, and severe erosion occurred. The successful performance of buildings in these
areas demonstrates the value of compliance with NFIP requirements regarding the elevation of
buildings in coastal flood hazard areas and current State of North Carolina requirements
regarding setback and piling embedment depth for oceanfront structures. The observations of
the team and the findings of a separate study of piling embedment depth conducted for FEMA
on Topsail Island (see Appendix C) suggest that the more stringent embedment depth
requirements incorporated into the North Carolina State Building Code in 1986 helped reduce
damage. The use of flood-resistant construction materials and techniques, such as in engineered
concrete buildings was also effective. In addition, breakaway walls, although generally not
installed properly, usually broke away as intended under the impact of flood forces and helped
prevent structural damage.

Although the BPAT noted that breakaway walls generally performed as intended, three
design and construction errors were observed that are worth noting:

* Breakaway wall panels were often installed immediately adjacent to and seaward of cross-
bracing. When the panels broke away, they were pushed against the cross-bracing by flood

2 XCTV UMR
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waters. The resulting force on the vertical surface generated loads far in excess of the
design strength of the cross-bracing. As a result, cross-bracing was broken or torn away.

* Utilities were installed on, through, or adjacent to breakaway wall panels. As a result, the
panels were often prevented from breaking away cleanly under flood loads, and when
they did break away, the utilities were damaged. Much of the utility damage observed was
a direct result of improper installation.

* Sheathing was installed on the exterior of breakaway wall panels, continuously over the
outside face of vertical foundation members. Sheathing installed in this way inhibits the
ability of the breakaway wall panels to break away cleanly.

Most slabs-on-grade below elevated buildings broke apart under the hydrodynamic and
impact loads imposed by flood waters and therefore did not transfer those loads to the
foundation system. Also, the resulting slab fragments were usually small enough that when they
became waterborne debris, they did not damage foundation system components. However, the
BPAT observed some design and construction errors worth noting:

* In some instances, slabs were attached to vertical foundation members with steel dowels
placed in the piling and cast into the slab. This practice resulted in the transfer of
unanticipated loads to the foundation system and may have caused the failure of some
foundations systems.

* The slabs observed generally did not have a sufficient number of contraction joints to
promote the slab's breaking into small pieces. In one instance, a large section of a slab
was observed to have been lifted by flood forces and to have come to rest against vertical
foundation members. Although evidence of a cause and effect relationship was not
directly observed, slabs that reacted in this way may have led to the failure of some
buildings as well.

* The use of wire mesh cast into slabs further complicated matters by holding pieces of the
slabs together after the slabs had fractured.

* Concrete collars were occasionally placed around pilings during the construction of
slabs. Although the collars were intended to provide stability, they increased wave loads
and scour by presenting larger obstructions to flow. Also, once the underlying sand was
removed by erosion, the collars increased the dead weight of the pilings to which they
were attached.

Utilities that were not installed in a manner that afforded the greatest extent of flood
protection possible were damaged. Although portions of most utility services must extend below
the flood level, many simple techniques are available to minimize or eliminate damages.
Observed damage to water, sewage, electrical, telephone, and cable TV services could have been
avoided. Septic tanks were routinely left exposed by storm-induced erosion and scour, and their
connections to buildings were severed. The tanks were then filled with flood water and debris.

On oceanfront homes, many porches, decks, and roof overhangs supported on vertical
foundation members collapsed or became structurally unsound. Similar failures occurred in the
porches, decks, and roof overhangs attached to some inland homes. These failures were observed
in both new and old structures. The vast majority of the vertical foundation members were found
to have been embedded only 4 to 5 feet below existing grade without any regard for erosion or
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scour. In a few situations, undersized vertical support members, usually measuring 4 inches by 4
inches or 6 inches by 6 inches, were shattered, probably by the impact of waterborne debris.

Many manufactured homes and permanently installed RVs were installed on dry-stack
masonry block foundations with metal tiedown straps attached to ground anchors. This method
of installation performed very poorly. The failure of these foundations resulted in the loss of
approximately 50 percent of the manufactured homes and RVs observed in the Surf City and
North Topsail Beach areas. The causes of failure observed by the BPAT were undermining of the
dry-stack block by scour resulting from relatively shallow velocity flow, failure of the tiedown straps
due to corrosion from salt spray, and pullout of the ground anchors. Pullout of ground anchors
occurred when the pullout resistance of the soil was exceeded because of improper anchor
selection and/or saturation of the restraining sandy soil when the site flooded.

The BPAT developed recommendations for reducing future hurricane damage. The
recommendations address areas of concern such as building materials (including corrosion
protection for metal structural components, e.g., hurricane clips, straps, and fasteners), design
practices, construction techniques, and quality of construction. The recommendations presented
in this report are applicable in other communities that experience similar coastal flooding.

This report presents the BPAT's observations of the successes and failures of buildings that
experienced the flood effects of Hurricane Fran, comments on building failure modes, and
provides recommendations intended to enhance the performance of buildings in future
hurricanes.

4 
EXECUTIVE SUMMARY
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1 Introduction
1. 1 PURPOSE

The purpose of this report is to present the observations of the Federal Emergency

Management Agency's (FEMA's) Building Performance Assessment Team (BPAT) regarding the

successes and failures of buildings that experienced the wind and flood effects of Hurnicane Fran

in North Carolina, to comment on the failure modes of damaged buildings, and to provide
recommendations for improvements intended to enhance the performance of coastal buildings
in future hurricanes.

1.2 STORM CONDITIONS
On September 5, 1996, Hurricane Fran made landfall in the vicinity of the Cape Fear, North

Carolina (see Figure 1-1). According to the National Hurricane Center, Fran was ranked as a

Category 3 (major) hurricane on the Saffir-Simpson Scale. Hurricane Fran was the most intense

hurricane to make landfall along the U.S. mainland during 1996. Although Fran's destructive

storm surge, waves, and winds impacted the immediate coastal areas east and north of Cape Fear,

heavy rainfall and high winds occurred well inland and resulted in riverine flooding and wind

damage to residential and commercial buildings, manufactured homes, trees and crops, and

power distribution systems in North Carolina, Virginia, West Virginia, and Maryland. Much of the

wind-realted damage was not caused directly by the wind but by wind-downed trees. In areas

where soils were saturated by the heavy rainfall, many trees were unable to resist the high winds

and caused extensive damage when they fell.

The National Hurricane Center and the National Weather Service estimated that Hurricane

Fran's maximum 1-minute sustained wind speed was 115 miles per hour (mph). It appears that

Hurricane Fran may have reached design wind speeds (110 mph, fastest mile for 50-year return

frequency) in a small area along the immediate oceanfront near Figure Eight Island. However,

most coastal buildings in the study area appear to have received less than design wind speeds. A

peak gust of 95 mph was recorded 940 feet from the ocean in Kure Beach. Although the storm

generated high winds along the coast and well inland, severe damage to buildings was

concentrated in those areas also affected by the storm surge and waves.

Independent of the BPAT process, FEMA's Mitigation Directorate and the Federal

Insurance Administration conducted a high water mark survey in the wake of Hurricane Fran

from just west and south of Cape Fear to just west of Cape Lookout. The goal of the survey

was to determine and map approximate high water mark elevations that indicate the
stillwater storm surge elevation and the combined effect of storm surge and waves in areas

significantly affected by Hurricane Fran. The resulting historical record will prove useful to
FEMA in the revision of Flood Insurance Studies and to the insurance industry in the
settlement of claims regarding flood and wind damage. Selected elevation measurements
made during this survey are shown in Figure 1-1. Storm surge elevations approached or
exceeded National Flood Insurance Program (NEIP) Base Flood Elevations (BFEs) from
Kure Beach to North Topsail Beach, along approximately 50 miles of coastline. As shown in

the figure, a maximum storm surge elevation of 11.9 feet above mean sea level (m.s..) - as
measured inside a structure - was recorded at Figure Eight Island, North Carolina. The
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maximum recorded high water mark of 15.4 feet m.s.l. (assumed to reflect storm surge plus wave

height) was at the southern end of Kure Beach, North Carolina.

The severity of erosion of oceanfront sand dunes is closely related to the storm surge

elevation at the shoreline. It is reasonable to assume that dune erosion due solely to Fran was a

100-year event. However, 2 months prior to Fran, Hurricane Bertha made landfall in the same

area Wind speeds and water levels were significantly less than those associated with Fran and

significantly below design conditions. Storm-induced dune erosion is at least partly temporary, but

there had been insufficient time for much recovery following Bertha's estimated storm surge of 6

to 9 feet m.s.l. The cumulative effect of back-to-back hurricanes appears to have caused dune

erosion distances in excess of what would be expected to occur in a single 100-year storm surge.

This report focuses on the damages along the North Carolina coast that resulted from

storm-induced flood surge, wave action, erosion, and scour.

1.3 BUILDING SITING AND CONSTRUCTION
REGULATIONS

Building construction regulations on the North Carolina coast have been established by the

North Carolina Coastal Area ManagementAct (CAMA), the North Carolina State Building Code, and

the NFIP. CAMA identifies ocean hazard areas, establishes oceanfront setback lines for new

construction, and protects sand dunes. The State Building Code regulates most structural

requirements. NFIP Flood Insurance Rate Maps (FIRMs) identify flood hazard areas and provide

BFEs. BFEs are used to establish minimum floor elevations for buildings in 100-year flood hazard

areas and other prescriptive and descriptive requirements of the NFIP. State requirements

regarding most other construction criteria are more stringent than those of the NFIW

1.3.1 NORTH CAROLINA COASTAL AREA MANAGEMENT ACT

In 1979 CAMA identified ocean hazard areas along the North Carolina coastline. All new

buildings were required to be set back from the seaward line of stable dune vegetation at least 30

times the long-term erosion rate determined by the North Carolina Division of Coastal Management

(see Figure 1-2 A). A minimum erosion rate of 2 feet per year was adopted. Additional setbacks were

required on the largest primary or frontal sand dunes. On previously subdivided lots too small to

meet the setback requirement, exemptions were allowed for single-family houses as close as 60 feet

from the vegetation line. In 1985 the minimum setback distance for commercial buildings larger

than 5,000 square feet was increased to 60 times the long-term erosion rate (see Figure 1-2 B), with

additional exemptions where the rate is greater than 3.5 feet per year.

1.3.2 NORTH CAROLINA STATE BUILDING CODE

The North Carolina State Building Code is based on the Standard Building Code with

significant revisions adopted by the North Carolina Building Code Council. A separate

Residential Building Code provides more prescriptive criteria for one- and two-family dwellings

and is now based on the Council of American Building Officials (CABO) Code with substantial

amendments by the Council. Most of the buildings observed near the coast had been constructed

under the Residential Code, which was first adopted in the mid-1960's and has undergone several

major revisions. After seven major hurricanes affected the North Carolina coast in the 1950's, the
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Figure 1-2 Minimum oceanfront setback requirements under the North Carolina Coastal Area
Management Act.
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Council adopted specific hurricane-resistant criteria for small residential buildings on the barrier

islands. These were initially an optional appendix but soon became mandatory, with enforcement

by local building officials. With a push from the State Building Code, building designs quickly

shifted away from low floor elevations with shallow foundations to piling foundations elevated for

underhouse parking. Since the 1960's, most houses on the barrier islands have been constructed
on pilings.

The State Building Code initially required pilings to be embedded 8 feet below grade. Later,

it became apparent that this piling penetration requirement was inadequate for erosion-prone
oceanfront buildings. The Code was revised onJanuary 1, 1986, to require piling foundations in

all coastal high hazard areas (NFIP V zones) and ocean hazard areas (identified by CAMA).

Buildings constructed closer to the seaward edge of the vegetation line than 60 times CAMA's

long-term erosion rate are now required to have pilings extending to -5.0 feet m.s.l. or 16 feet

below grade, whichever is less. At the same time, requirements for cross-bracing between pilings

were added to improve wind resistance, making buildings with longer pilings readily

distinguishable from older buildings on unbraced pilings with shallower embedment.

Wind-resistant construction techniques emphasizing improved connections from roof to

foundation were in standard practice before 1970. Major increases in the wind criteria in the

Residential Building Code have already been adopted and are scheduled to take effect sometime

in 1997. The new criteria will, for the first time, apply up to 100 miles inland from the coast,

rather than only on the barrier islands.

1.3.3 NATIONAL FLOOD INSURANCE PROGRAM

All communities on North Carolina barrier islands participate in the NFIP. The NFIP

was created by an act of Congress in 1968 to make flood insurance available to property
owners in communities that agree to enact and administer floodplain management
regulations that meet program requirements. The regulations require that new and
substantially improved buildings in floodprone areas be built in such a manner as to reduce
flood hazards and loss of life and property resulting from floods. In coastal areas, this means
that buildings must be adequately elevated and protected from the effects of high-velocity
flood flow. In V zones, buildings must be elevated on piling foundations and the lowest
horizontal structural member of the lowest floor must be at or above the BFE. In addition,
the area below the building must be free of obstructions or enclosed by non-supporting
breakaway walls intended to collapse under wind an water loads without causing damage to
the foundation or the elevated portion of the building. In coastal A zones, which are less
likely to be affected by high-velocity flow, the lowest floor of the building must be at or above
the BFE and the areas below the BFE can be enclosed with non-breakaway walls.

In the mid-1970's, FEMA issued a FIRM for each of the barrier island communities in North

Carolina. When the communities began implementing their required floodplain management
regulations in the late 1970's, the minimum lowest floor elevation requirements based on the

BFEs shown on the FIRMs superseded the previous State Building Code requirement that the

lowest floor be 2 feet above the highest known historical water mark. The resulting common use

of piling foundations with underhouse parking generally placed the elevated floors well above

minimum elevations required by the NFIP. However, finished underhouse enclosures constructed

with non-load-bearing walls were common in older buildings and, in some communities, in new

buildings.

I
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Concerns about the accuracy of the information shown on FIRMs for areas near the ocean
had been previously raised in North Carolina communities affected by Hurricane Fran.
According to the FIRMs, many oceanfront lots are within B zones and C zones, outside the 100-
year flood hazard area. In general, minimal elevation requirements at the building sites on these
lots did not include consideration of waves above the stillwater flood elevation. The accuracy of
the FIRMs and the steps being taken by FEMA in response to this issue are discussed in Section
2.10 of this report.

An important provision that communities participating in the NFIP must include in their
floodplain management regulations is the requirement that substantially damaged buildings, if
restored, meet the same requirements imposed for new buildings. The NFIP defines substantial
damage as "damage of any origin sustained by a structure whereby the cost of restoring the
structure to its before damage condition would equal or exceed 50 percent of the market value of
the structure before the damage occurred." The BPAT observed several hundred buildings in the
area between Kure Beach and North Topsail Beach that may have been substantially damaged.
The vast majority of these were oceanfront residential buildings removed from their foundations
by flood forces.
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2 Site Observations
2.1 ASSESSMENT TEAM APPROACH

On September 12, 1996, the FEMA Mitigation Directorate deployed a BPAT to coastal North

Carolina to assess damage caused by Hurricane Fran. The team was composed of FEMA

Headquarters and regional office engineers, a State representative, a consulting structural

engineer, a consulting specialist in coastal construction and shoreline erosion, a consulting coastal

engineer, the Chief Underwriter of the NFIP, and an engineer from the Insurance Institute for

Property Loss Reduction. (See Appendix B for a list of team members.) Some members of the

BPAT also represented the American Society of Civil Engineers (ASCE) Committee on flood-

Resistant Design and Construction.

The mission of the BPAT was to assess the performance of buildings on the barrier islands

most directly affected by Hurricane Fran and to make recommendations for improving building

performance in future events. Better performance of building systems can be expected when the

causes of observed failures are determined and repair and reconstruction are undertaken in

accordance with recognized standards of design and construction. The immediate goal of the

BPAT process is to provide guidance to State and local governments for post-hurricane

reconstruction. In addition, the BPAT's findings can enhance future coastal design and

construction.

The BPAT made its assessments by conducting site investigations to observe the condition of

buildings in selected areas affected by the storm. The scope of the BPAT process did not include

recording the numbers of buildings damaged by the hurricane, determining the frequency of

specific types of damage, or collecting other data that could serve as the basis of statistical

analyses. Collectively, the team did invest over 600 hours of effort conducting site investigations,

inspecting damages, and preparing documentation. Documentation of observations made during

ground-level and aerial surveys included field notes and photographs.

On Friday, September 13, 1996, the BPAT conducted an aerial survey along the North

Carolina coast from Wrightsville Beach (in the south) to Emerald Isle (in the north). Ensuing

ground observations were made in the area extending from Kure Beach (in the south) to North

Topsail Beach (in the north). Figure 2-1 shows the areas where the aerial surveys and ground

observations were made. Other communities in the studied area include Carolina Beach,

Wrightsville Beach, Topsail Beach, and Surf City. Documentation of observations made during the

ground and aerial surveys included field notes and photographs.

The BPAT assessed the performance of primary structural systems of buildings, i.e., systems

that support the building against lateral and vertical loads experienced during a hurricane;

building extensions, such as decks, porches, and roof overhangs; nonstructural building

components such as breakaway walls and below-building concrete slabs; and on-site building

support utilities such as electrical, water, and sewage services. The team focused its efforts on

primary structural systems. It is extremely important to note, however, that damage to other

portions of buildings often contributed to the damage incurred by the primary structural systems.

The building types observed were primarily one- and two-family, one- to three- story, wood-

frame structures elevated on wood pilings. Other types of construction observed included one-

and two- family wood-frame, slab-on-grade houses, manufactured homes and permanently

installed recreation vehicles (RVs) on dry-stack masonry foundations, and a small number of

2-1
BUILDING PERFORMANCE ASSESSMENT: HURRICANE FRAN IN NORTH CAROLINA 2-1



CAPE LOOKOUT

-I

0
w

0z
(n

pro\ CAROLINA BEV

CAPE FEAR
C:ASWELLBEACH

PRIP AERIAL SURVEY

GROUND OBSERVATIONS

SCALE: 1 INCH =APPROXIMATELY 16.5 MILES

Figure 2-1 Areas of BPAT aerial survey and ground observations.



wood-frame structures elevated on solid perimeter masonry walls. In general, wood-frame

structures elevated on piling foundations outperformed all other types of foundations (e.g.,
masonry pier, solid perimeter masonry wall [crawl space], slab-on-grade) in resisting flood effects,

including velocity flow, storm surge, breaking waves, debris impact, erosion, and scour. The team

also observed two commercial structures: a hotel in which dry floodproofing measures helped

protect the structure from flood damage and a large oceanfront engineered concrete building
that performed well.

2.2 EROSION AND SCOUR

OCEANFRONT RESIDENTIAL BUILDINGS

Coastal areas from Cape Fear to Cape Lookout experienced significant erosion and scour. In

many locations, especially from Topsail Beach to North Topsail Beach, localized frontal dunes

were eroded and the beach profile was lowered 2 to 3 feet. Erosion beneath oceanfront homes

averaged 4 to 6 vertical feet (see Figure 2-2). In addition, erosion and localized scour at vertical

foundation members was observed to have occurred.

A cursory study of localized scour was performed during the site investigation. Sand

surrounding pilings was excavated to identify the maximum localized scour that occurred. From

changes in sand color, texture, and bedding, the team determined that, in general, localized

scour occurred to a depth of approximately 1 to 1.5 times the diameter or width of the piling (see

Figure 2-3). The depth of scour around 8-inch-diameter round pilings and 8-inch x 8-inch square

pilings supporting oceanfront structures was measured to be approximately 10 to 11 inches.

Figure 2-2 Erosion resulted in significant loss of supporting sand, averaging 4 to 6 feet, under
oceanfront buildings.
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Figure 2-3 Determination of localized scourfrom changes in sand color texture, and bedding.

Erosion and scour were commonly observed to total 5 to 7 vertical feet at oceanfront homes in
the area from Topsail Beach to North Topsail Beach. This erosion and scour, added to the long-
term erosion rate of an average 1 to 2 feet a year, left many homes unable to withstand the loads
imposed by flood and wind forces acting simultaneously (see Figure 2A4).

LANDWARD RESIDENTIAL BUILDINGS

No evidence of general erosion was observed in the areas around landward structures, but
evidence of localized scour around pilings and other obstructions was plentiful (see Figures 2-5
and 2-6). In general, scour did not result in the failure of the piling foundations of landward
structures. However, scour around the vertical members supporting air conditioner platforms and
building extensions such as decks, porches, and roof overhangs occasionally decreased the ability
of the vertical members to withstand flood forces and led to their collapse.
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Figure 2-4 Loss of the frontal dune and the resulting erosion and scour left many
coastal houses unable to resist wind and flood loads acting simultaneously.

Figure 2-5 Overwash of barrier islands generated high-velocity flows that caused extensive scour
adjacent to large objects.
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Figure 2-6 The disruption of velocity flows by large, non-breakaway objects generated extensive
scour that undermined verticalfoundation members and slabs-on-grade.

2.3 BUILDING FOUNDATION SYSTEMS
In assessing the performance of structure foundation systems, the BPAT addressed a variety

of issues related to the performance of oceanfront and landward structures: piling and column
embedment for structures and their extensions (e.g., utility platforms, decks, porches, and roof
overhangs), the grade of lumber used for vertical foundation members, elevation of structures in
relation to the flood depth, cross-bracing of vertical support members, and solid perimeter
foundation walls on continuous footings. The BPAT also assessed the performance of foundations
under manufactured homes and permanently installed RVs.

2.3.1 PILING EMBEDMENT FOR STRUCTURAL SUPPORT

Lack of sufficient embedment of vertical structural foundation members may well have
contributed to the collapse of over 100 oceanfront residential buildings (see Figure 2-7). Of those
that did not collapse, many were found to be leaning (see Figure 2-8). The majority of these
structures met the pre-1986 requirement for an 8-foot embedment of pilings and columns
(measured from existing grade). Many front-row houses were placed near or on the landward
slope of the frontal dune, where the ground elevations were often 8 to 9 feet m.s.l. As a result, the
bottoms of the pilings or columns were at approximately 0 feet m.s.l. (see Figure 2-9)

As noted in Section 1.3.1, the North Carolina State Building Code was revised in 1986 to
require that vertical foundation members in erosion-prone areas be embedded 16 feet below
existing grade or to -5 feet m.s.l., whichever is shallower. The 1986 requirement was generally
successful in protecting structures in areas of low ground elevation, where pilings had to be
embedded to -5 feet m.s.l. This is significant because most of the buildings undermined by
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Figure 2-7 Over 100 oceanfront houses were washed off their foundations or completely destroyed.

Figure 2-8
Many oceanfront houses built
prior to current (1986) North
Carolina State Building Code
requirements were found to be
leaning or destroyed.

BUILDING PERFORMANCE ASSESSMENT: HURRICANE FRAN IN NORTH CAROLINA 2-7



-16'

-12'

- 8

- 4'

- O MSL

U)

0
w
U)

0
z
U) Figure 2-9 Typical collapse mechanism of post-FIRM building based on pre- 985 embedment requirements in North Carolina coastal areas.



erosion were in areas where the ground elevations were low. For structures on higher dunes (i.e.,

where ground elevations exceed 11 feet m.s.l.) the piling embedment requirement changes to
only 16 feet below grade. This embedment depth is not sufficient to allow the pilings to survive a

similar storm or continuing long-term erosion of moderate to high dunes.

Although post-1986 oceanfront structures generally performed better than oceanfront
structures built prior to 1986, several foundations supporting oceanfront structures that were
observed to be leaning were suspected of being post-1986 (see Figure 2-10). The remaining
embedment depth of the foundation members beneath these structures was not determined by
the BPAT; however, for example, with a pre-storm grade of 11 feet m.s.l., erosion of

approximately 6 vertical feet to an elevation of approximately 5 feet m.s.l., and localized scour of

an additional 1 vertical foot, the vertical foundation members should still have been embedded
approximately 9 feet below grade during the height of the storm. This depth should have been
sufficient to prevent leaning in many cases. One possible explanation is that the pilings under
these leaning structures did not meet the current embedment depth requirement

To follow up on this issue and investigate the effects of the current North Carolina State
Building Code requirements on the performance of foundation pilings, FEMA contracted with
Woodward-Clyde Federal Services (W-C) to determine piling embedment depths for oceanfront
buildings on Topsail Island, North Carolina, where Hurricanes Bertha and Fran damaged a
number of structures. Using aerial photographs, W-C identified 205 post-1986 oceanfront

buildings. Of the identified buildings, 92 percent had not sustained any significant foundation
damage. The remainder had pilings that were damaged or leaning. W-C conducted tests to

determine the embedment depths of selected pilings under 11 of the identified buildings,

Figure 2-10 One of several buildings observed to be leaning landward that were suspected of having
been constructed to current North Carolina State Building Code requirements.
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including 7 leaning buildings, and found that over 80 percent of the tested pilings did not meet the
1986 embedment requirement. The testing procedure and the findings are presented in a separate
report prepared by W-C. The Executive Summary from the W-C report is contained in Appendix C
of this report. Recommendations based on W-C's findings are presented in Section 3.1.1.

2.3.2 PILING EMBEDMENT FOR DECKS, PORCHES, AND ROOF OVERHANGS

Lack of sufficient embedment of vertical foundation members for decks, porches, and roof
overhangs attached to oceanfront and landward residential buildings resulted in the collapse of
several hundred of these building extensions (see Figure 2-11).

OCEANFRONT RESIDENTIAL BUILDINGS

Vertical foundation members supporting unroofed decks did not have to meet the pre-1986
State Building requirement for 8-foot piling embedment, nor do they have to meet the post-1986
requirement for 16-foot embedment. Vertical foundation members for covered porches and roof
overhangs are supposed to meet the criterion applied to the foundation members for the main
structure. The BPAT found that vertical foundation members for decks, porches, and roof overhangs
were often embedded to a depth of only 2 to 6 feet below existing grade (see Figure 2-12).

Decks, porches, and roof overhangs were often built on the seaward side of oceanfront
structures and were therefore often embedded into the frontal dune (see Figure 2-9). With
embedments of only 2 to 6 feet into the dune, the bottoms of the pilings or columns were often at
elevations of 4 to 8 feet m.s.l. The remaining embedment depth of those deck, porch, and roof
overhang supports that survived the hurricane appears to be as little as 1 to 2 feet in many cases.

Figure 2-11 The BPAT observed several hundred decks and porches that collapsed as a result of
insufficient foundation support.
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Figure 2-12 Example of building constructed to current North Carolina State Building Code
requirements with insufficient embedment of piles/columns under two-story deck.

Figure 2-13 Embedment of deck supports into frontal dune was often shallow. After erosion of the
dune, the bottom of the support for this deck was left several feet above grade.
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Since these supports are usually seaward of main structures, they are subject to amounts of storm
surge, velocity flow, wave action, vertical erosion, and localized scour at least as great as those that
affect the main structure (see Figure 2-13).

In the areas where decks, porches, and roof overhangs were observed, erosion was
approximately 7 vertical feet, to an elevation of approximately 4 feet m.s.l. Localized scour of an
additional vertical foot would result in total loss of embedment to an elevation of 3 feet m.s.l.
during the peak of the storm (see Figure 2-9). When vertical foundation members lost their ability
to support the structure above, the deck, porch, or roof overhang often collapsed, damaging the
structure to which it was attached and becoming waterborne debris that was then carried into the
main structure or nearby structures (see Figure 2-14). This damage may have contributed to the
collapse of some buildings.

For decks, porches, and roof overhangs to have survived, their supporting vertical members
would have to have had a post-storm embedment of approximately 8 feet below grade. The
findings of the team regarding decks, porches, and roof overhangs are particularly important
because it appears that the construction of multilevel decks and porches supporting roof
overhangs is becoming increasingly popular in oceanfront architecture (see Figure 2-15). Usually,
these building extensions are larger and more complex than required solely for building access.

LANDWARD RESIDENTIAL BUILDINGS

Decks, porches, and roof overhangs supported by vertical foundation members were
observed to have been installed on many landward homes on barrier islands. In general, these
building extensions were not protected from localized scour caused by velocity flow. The loss of

Figure 2-14 Storm-generated debris impacted nearby structure.
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Figure 2-15 As shown by this post-Fran photograph taken at Figure Eight Island, North Carolina, a
current architectural trend is the construction of multistory decks supporting roof overhangs

supporting soil due to scour often left vertical foundation members of decks, porches, and roof
overhangs unable to resist the velocity flow, wave action, and debris impact forces that occurred in
coastal areas (see Figure 2-16). Vertical foundation members were found to not be embedded to
the same depth as the main building supports. It was reported that the North Carolina State
Building Code requires vertical supports for the main structure outside of a V Zone to be
embedded 8 feet below existing grade, but that no such requirement was enforced for building
extensions such as decks and, in some instances, porches and roof overhangs.

2.3.3 DEBRIS IMPACT ON VERTICAL FOUNDATION MEMBERS

Debris observed by the BPAT included 8-inch x 8-inch pilings up to 20 feet long (see Figure
2-14), round 6-inch diameter posts, septic tank sections (see Figure 2-17 ), materials fr-om
collapsed adjacent houses, the remains of collapsed decks (from the house impacted and from
adjacent and other nearby oceanfront houses - see Figure 2-18 ), and portions of collapsed
fishing piers. An extreme example of debris impact is shown in Figure 2-19. Although debris
impact generally was not suspected of causing significant failure of vertical foundation members,
it did damage foundation cross-bracing, as discussed in Section 2.3.6.

2.3.4 GRADE OF LUMBER USED FOR TIMBER PILINGS AND CROSS-BRACING

To resist coastal flood forces, timber pilings depend largely on their dimensions and depth
of embedment, but another important factor is the grade of lumber used. Lower grades of
lumber may have knots, cracks, or other imperfections that contribute to failure when the piling
is acted on by water and debris impact forces. For example, Figure 2-20 shows a faied timber
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Figure 2-1 7 Precast concrete ring section of septic tank became waterborne debris, impacting
building foundation members.

Figure 2-18 Impact of debris from a damaged deck appeared to have broken cross-bracing.
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Figure 2-19 Example of extreme impact - two houses floated and pushed into another house.

Figure 2-20
Example of broken piling¢ The
piling broke at the location of
several knots (circle), where cross-
bracing was attached (note
remaining bolt and piece of
bracing).
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piling whose strength was compromised by closely spaced knots. Failures of this type were not
widely observed by the BPAT but, as indicated by Figure 2-20, are a potential problem that can
lead to structure failure and even collapse.

2.3.5 ELEVATION OF BUILDINGS

NFIP regulations require that structures in Coastal High Hazard Areas (V zones) be elevated
so that the lowest horizontal structural member of the lowest floor is at or above the BFE shown
on the FIRM in effect at the time of construction. In the areas visited by the BPAT, structures in V
zones appeared to have been built in compliance with this requirement. For structures in A zones,
the NFIP regulations require that the lowest floor be elevated to or above the BFE; no
requirements are imposed for structures in B, C, and X zones. Although elevating on open
foundations with lowest horizontal structural members at or above the BFE is not required
outside of V zones, this practice was widely observed in A, B, C, and X zones on the barrier islands
within the study area (see Figure 2-21).

Homes in A, B, C, and X zones were often elevated 8 to 9 feet on embedded piling
foundations to allow below-building parking and storage. This practice undoubtedly resulted in
less damage than would have occurred if the lowest floors of these structures had been elevated
only to the BFE in A zones and not elevated at all in B, C, or X zones. However, the areas below
many of these elevated buildings had been enclosed with nonstructural wall panels and were
being used for living space rather than solely for parking, storage, and building access. When
acted on by velocity flows, the wall panels often collapsed. As a result, the affected buildings
incurred extensive nonstructural damage.

Figure 2-21 Survival of this properly elevated North Carolina State Park public rest room
demonstrates the State's commitment to proper construction in coastal areas.
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2.3.6 CROSS-BRACING BELOW ELEVATED BUILDINGS

The BPAT found widespread damage to 2x cross-bracing, especially below oceanfront
homes, including braces split along the grain, braces shattered across the grain, and pull-through
of brace attachment bolts. (The term "2x" refers to lumber with nominal dimensions of 2 inches
x 8 inches, 2 inches x 10 inches, etc.) Wave and debris impact appeared to have generated the
greatest amount of damage. As noted in Section 2.3.3, the debris observed by the team included
8-inch x 8-inch pilings and 6-inch diameter posts, septic tank sections, and materials from
collapsed houses, decks, and fishing piers. These types of objects can result in point-loading
impacts that generate loads well beyond the material strengths of 2x cross-bracing. Although
damage was most prevalent in areas where extensive debris was observed, no definitive cause and
effect relationship could be established

Debris was also observed lying against or draped over cross-bracing. When exposed to the
hydrodynamic loads imposed by flood waters, debris draped over or lying against cross bracing
increases the drag coefficient and the area of the obstruction, thereby increasing the lateral loads
transferred to the foundation. Although cross-bracing was frequently damaged, this damage did
not appear to result in damage to the elevated building as long as the pilings were embedded
deep enough to resist erosion.

2.3.7 SOLID PERIMETER MASONRY FOUNDATION WALLS SUPPORTED ON A
CONTINUOUS FOOTING

Solid perimeter masonry foundation walls supported by a continuous footing are not a
prevalent form of construction on the barrier islands within the study area. Where this type of
construction was found in areas of high-velocity flow, poor building performance was generally
observed. High-velocity flood flows moving around the perimeter foundation walls generated
localized scour that propagated to a depth greater than that of the bottom of the continuous
footing supporting the perimeter foundation wall. Once the soil underlying the footing was lost,
the footing and foundation wall collapsed, leaving the floor diaphragm unsupported (see Figure
2-22). This scenario occurred not just in oceanfront areas, but also in areas set back more than
600 feet from the ocean shoreline (see Figure 2-23). Even in areas of relatively shallow flooding (1

to 2 feet deep) and where deposition of beach sand had occurred, scour and collapse of solid
perimeter foundation walls was observed.

2.3.8 MANUFACTURED (MOBILE) HOME AND PERMANENTLY INSTALLED RV
FOUNDATIONS

Many manufactured homes and RVs were significantly damaged by Hurricane Fran. The vast
majority of manufactured homes and RVs were anchored on top of dry-stackmasonry block piers
and anchored with metal straps and helical anchors (2 feet long with 3inch helical plates)
embedded into the sand (see Figure 2-24). While most were exposed to relatively shallow flood
depths (1 to 3 feet), many were moved 50 feet or more laterally and flipped over by wind forces
acting alone or in conjunction with flood forces (see Figures 2-24 and 2-25).

The team observed depressions from 1 to 2 feet deep left by localized scour within the
original footprint of the structure (see Figure 2-25). The scour may have been caused by
numerous factors, including a discontinuity between the stabilizing root mat provided by grass
surrounding the site and the corresponding loss of unprotected sand beneath the home, the
creation of a large obstruction by the solid skirt surrounding the foundation system, and localized
scour around the dry-stack masonry piers supporting the structure.
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Figure 2-22 Collapse offooting and foundation wall under elevated wood-frame building. Collapse
resulted because obstruction offlow by building caused scour to extend below the bottom
of the footing (arrow). Note propane gas line (circled) extending through foundation wall.

_ 0I

Figure 2-23 Catastrophicfailure of landward building constructed on masonry wall and slab-on-
grade foundation. Failure resulted because obstruction offlow by building caused
extensive scour Note compressor collapsed into scour hole.
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Figure 2-24 Permanently installed RVoverturned as a result of anchor pullout.
Anchor (circled) is 2 feet long.

i Homes Washed Off
Foundations

Figure 2-25 Localized scour beneath pre-storm footprint of manufactured home. Note the collapsed
dry-stack block foundation and termination of root mat, which otherwise would have
helped stabilize the adjacent ground.
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Even units tied down with straps and helical anchors were displaced from their foundations
because of pier undermining and subsequent collapse, strap failure, or anchor pullout. Strap
failure may have occurred when the tensile strength of the strap was exceeded. Anchor pullout
occurred when the resisting force of the surrounding soil was exceeded. Both strap failure and
anchor pullout occurred in several scenarios, which include the following:

* Collapse of the supporting dry-stack masonry foundation due to localized scour. When the
foundations gave way, the unit fell onto the ground, exposing the seaward face to the full force of
the velocity flow and debris impact.

* Failure of the strap due to corrosion. Several corroded straps were observed to have failed
when they were exposed to minimal tensile loading. The coastal environment, where salt and
moisture are present, can accelerate the rate of corrosion. Straps that are exposed to salt spray
and that are not periodically cleansed by rainfall can lose much of their design tensile strength in
a little as 3 to 5 years.

* Pullout of the anchor due to soil saturation. All anchors observed had been embedded in
sand. During flooding conditions, sand can quickly become saturated and thereby loose it
capacity to resist pullout of the helical anchor plates. Because anchors that had pulled out were
observed to have small-diameter helical plates and shallow embedments, it is assumed that soil
saturation played at least a contributing role in anchor pullout.

In addition, the use of anchors of the wrong size and the installation of anchors not in
accordance with manufacturers' recommendations may have contributed to the observed failures.

2.4 BREAKAWAY WALLS BELOW ELEVATED BUILDINGS
Many of the areas below BFE beneath elevated structures observed by the BPAT had been

enclosed with wall panels intended to break away under the impact of hydrodynamic flood forces.
Under the NFIP, this practice is permitted. When properly installed, these wall panels break away
under the impact of hydrodynamic flood forces and therefore do not transfer loads to the
foundation of the structure and the structure frame. Although the BPAT observed that breakaway
wall panels generally performed as intended, some problems are worth noting. The placement of
exterior sheathing of breakaway panels continuously over adjacent vertical foundation members,
the improper attachment of breakaway panels to foundation members, and the improper
position of the panels in relation to foundation cross-bracing were often found to affect their
performance. These issues are discussed in the following sections.

2.4.1 PLACEMENT OF EXTERIOR SHEATHING OVER PILINGS

On some structures, exterior sheathing consisting of oriented strand board (OSB) had been
installed over breakaway wall panels in such a way that it traversed adjacent panels and the faces of
intervening vertical foundation members. Sheathing installed in this fashion is not in
conformance with breakaway wall designs recommended by the NFIP. It interferes with the
function of the breakaway panels because it must fail before the panels can break away (see
Figures 2-26 and 2-27). The OSB installed across breakaway panels and foundation members did
not appear to have caused structural damage; however, when acted on by flood forces, it can
potentially place unnecessary and unanticipated lateral loads on vertical foundation members.
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2.4.2 IMPROPER ATTACHMENT OF BREAKAWAY WALL PANELS TO FOUNDATION
MEMBERS

In general, the BPAT observed that breakaway wall panels had been attached to structure
foundation members with an excessive number of fasteners (nails). The BPAT did not observe
any instances of structural failure or structural damage that appeared to have resulted from this
practice. However, when an excessive number of fasteners are used between the structural
members and the perimeters of the breakaway wall panels, the loads necessary to make the panels
break away increase significantly, far beyond the flood load expected to cause the panel to break
away. Another example of improper attachment is shown in Figure 2-28. Placing anchor bolts
through the sill plate of the breakaway wall panel prevents it from breaking away until the forces
on it have increased significantly beyond those under which the wall is intended to break away.

2.4.3 PLACEMENT OF BREAKAWAY WALL PANELS SEAWARD OF CROSS-
BRACING

On a few structures, breakaway wall panels were observed to have been installed directly
seaward of cross-bracing (see Figure 2-29). When the panels broke away under the loads imposed

by flood waters, they moved
back and came to rest vertically
against the cross-bracing. As a

l lresult, the vertical surface
exposed to velocity flow,
breaking waves, and debris
impact increased tremendously

; land so did the corresponding
loading on the cross-bracing.
For cross-bracing installed across
a typical 8-foot span between
pilings, the resulting loading far
exceeds the bending moment
capacity of 2x or 3x wood braces
in the narrow dimension. As a
result, the cross-bracing often

_1 lfailed.

Figure 2-26
Exterior sheathing of breakaway
wall spanned piling.
Note torn sheathing (arrow).
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Figure 2-27 Breakaway wall panelfailed to function as designed because continuous sheathing was
installed across pilings. No structural damage was observed; however, note damage to
utility components installed on breakaway wall panel.

Figure 2-28 Use of anchor bolts through the sill plate of a breakaway wall is improper Even though
this bolt does not have a nut and washer, it prevented the wallfrom breaking away
laterally.
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CROSS-BRACING SPLINTERED;
FASTENERS HAVE PULLED
THROUGH BRACING BECAUSE OF
EXCESSIVE LOADING

Figure 2-29 Improper installation of breakaway valls (on the seaward side of cross-bracing) resulted
in failure of cross-bracing. Note breakaway wall pushed against cross-bracing.

2.5 BELOW-BUILDING CONCRETE SLABS
With some minor exceptions, below-building concrete slabs generally performed as

intended. Because some of the exceptions resulted in building damage, they are worth noting.

2.5.1 SLAB THICKNESS

Slabs thicker than 4 inches were observed to have caused two problems:
* The thicker the slab, the greater the force needed to break the slab and therefore the

greater the load transferred to the building foundation system until the slab breaks free of
the foundation (see Figure 2-30).

* The thicker the slab the more it weighs per square foot of surface area. When a thicker slab
breaks apart, the sections weigh more than those of the same size from a thinner slab and
they create greater impact loads when they are thrown up against the building foundation
by velocity flow and wave action.

2.5.2 SLAB JOINTS

Three general types ofjoints are used in concrete slabs under elevated buildings: tooled and
sawcut contraction (crack control), expansion, and isolation:

* Contraction joints are cut into the surface of the slab after the slab is poured and floated
level. The joints become vertical planes of weakness that are intended to control crack-
ing. These planes of weakness can serve a dual purpose by creating a frangible slab, since
they are also the planes along which the slab is expected to break during a coastal ero-
sion and scour event such as a hurricane or Nor'easter.
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o Expansion joints are set in place before the slab is poured. They separate independent
slab sections and are filled with a compressible material that allows the sections to ex-
pand and contract in response to changes in temperature. They also help create a
frangible slab.

* Isolation joints are used to separate the slab from structural members, such as vertical
foundation members, and other slab penetrations. These joints are similar to expansion
joints in that they are filled with a compressible material and are set before the slab is
poured. When used in frangible slabs, they help ensure that the slabs will break away cleanly
from the vertical foundation members and other slab penetrations such as sewer riser pipes.
The problems associated with slab joints involved the number of contraction joints and the

effect of reinforcing wire mesh. In the slabs beneath many structures, the number of contraction
joints was observed to be insufficient to make the slabs fi-angible. When the slabs broke up, the
pieces were too large and generated unnecessary impact loads on the foundation system.
Occasionally, the lack of an adequate number of contraction joints prevented the slab from
breaking up. Figure 2-31 shows a large, unbroken section of a below-building slab-on-grade that was
flipped up, probably by wave action, and came to rest against two vertical foundation members. The
flipped slab created an obstruction that increased the flood loads on the foundation. In fact, the
vertical foundation members behind the slab in Figure 2-31 were found to be leaning landward.

2.5.3 WIRE MESH

The BPAT observed that wire mesh was used in most slabs. The mesh is laid oun before the
concrete is poured. It usually extends across contraction joints but usually does not extend across
expansion joints . The BPAT observed that where wire mesh was present, it usually had been
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Figure 2-31 Concrete slab-on-grade flipped up, probably by wave action, came to a rest against two
foundation members, generating large, unanticipated loads on the foundation.
Note slab is supported on concrete collars around piles and contains wire mesh.

installed improperly (i.e., at the bottom rather than in the middle of the slab). Even so, the team
observed that when reinforced slabs broke apart, broken sections were held together by the wire

and came to rest against, or became wrapped around, vertical foundation members. As a result,
large, unanticipated loads were transferred to the foundation system.

2.5.4 CONNECTING THE SLAB TO THE VERTICAL FOUNDATION MEMBERS

Some engineers and architects may have specified, or contractors chose to use, dowels to

connect concrete slabs-on-grade to vertical foundation members. The dowels, intended to help
prevent the differential settlement of the slabs, were inserted into or through the vertical

foundation members before the slab was poured. They caused serious problems when the slabs

broke apart under flood loads. The dowels made it more difficult for the slab to break into small

pieces and separate cleanly from the vertical foundation members. Even when the slabs broke
into small pieces, the dowels acted like pins in a hinged connection, keeping the slab connected
to the vertical foundation members (see Figure 2-32). As a result, unnecessary and unanticipated
flood loads were transferred to the vertical foundation members.

Although the BPAT was unable to define a cause-and-effect relationship, several buildings
with this slab-to-foundation pin detail were found to be leaning. The team members believe that
the inability of the slab to break free of the vertical foundation members was at least partially
responsible the failure of the vertical foundation members to remain plumb.
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Figure 2-32 Use of steel dowels to tie slabs to vertical foundation members prevented the proper breakup
of slab. A portion of the slab was left attached to the piling, resulting in large,
unanticipated loads on foundation members. Note leaning vertical member, on right.

2.5.5 CASTING CONCRETE GRADE BEAMS AND SLABS-ON-GRADE
MONOLITHICALLY

Some concrete grade beams and slabs-on-grade were poured monolithically in a continuous
concrete pour. As a result, large loads were transferred to the foundation system when velocity
flow, breaking waves, and debris forces were applied to the sections of slabs attached to the grade
beam. Although the BPAT was unable to define a cause-and-effect relationship, several buildings
with this monolithic grade beam and slab detail were found to be leaning. The team members
believe that the inability of the slab to break free of the vertical foundation members and grade
beam was at least partially responsible for the failure of the vertical foundation members to
remain plumb.

2.5.6 CONCRETE COLLARS

The BPAT observed that concrete collars were often poured around foundation pilings in
conjunction with the construction of below-building concrete slabs (see Figures 2-14 and 2-31).
Although intended to provide stability, these collars presented a large obstruction to flow, therby
increasing flood loads on, and scour aiound, the pilings to which they were attached. the
increased sor resulted in a loss of sand supporting the foundation (see Figure 2-31). As shown
in Figure 2- 14, collars did not prevent piling failure.
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2.6 ON-SITE UTILITY SYSTEMS
Building performance issues concerning on-site utility systems usually involved air conditioning /

heat pump compressors and their supporting platforms, the placement of utility system components in
relation to breakaway wall panels and vertical foundation members, and septic tanks.

2.6.1 AIR CONDITIONING / HEAT PUMP COMPRESSOR PLATFORMS

The majority of air conditioning and heat pump compressor platforms supported by posts
collapsed when acted on by flood forces. The posts were generally observed to be embedded only
1 to 2 feet. Once platforms were dislodged, they often collasped, leaving compressors submerged
in flood water (see Figure 2-23. Many compressors were observed to have become waterborne
debris. Occasionally, when a platform survived, the compressor was insufficiently elevated and was
inundated with salt water and sand. Once inundated, the compressor is no longer salvageable and
must be replaced.

OCEANFRONT RESIDENTIAL BUILDINGS

When post-supported platforms adjacent to oceanfront houses collapsed, the cause was
almost always erosion and scour combined (see Figure 2-33). Erosion in the areas where the
platforms were set was generally 2 to four 4 feet in depth, often exceeding the embedment depth
of the support posts. Cantilevered platforms, which do not depend on vertical support members,
escaped the scour- and erosion-induced damage incurred by post-supported platforms.
Compressors installed on adequately elevated c(antilevered platforms were not subject to flood-
related damages, including inundation, but were still subject to wind damage when they were not
adequately anchored (see Figure 2-34).

Figure 2-33 Air conditioning / heat pump compressor platform leaning because erosion and scour
caused loss of one ,upporting column.
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Figure 2-34 Although the air conditioning/heat pump compressor platform on this oceanfront house
was adequately elevated with cantilever bracing, the compressor was almost pushed off
the platform by wind because of the lack of the necessary attachment.

LANDWARD RESIDENTIAL BUILDINGS

Many of the post-supported compressor platforms adjacent to homes landward of the
oceanfront row collapsed as a result of localized scour due to velocity flows (see Figures 2-23 and
2-35). Localized scour of approximately 1 foot in depth was generally observed. Where posts were
embedded only 1 to two 2 feet, localized scour allowed the velocity flow and debris impact forces
to dislodge the platform. Platforms with properly embedded posts performed much better. Often,
the only damage sustained by landward residential buildings was the loss of the compressor unit
due to water or wind damage.

2.6.2 PLACEMENT OF UTILITIES ON, THROUGH, OR ADJACENT TO BREAKAWAY
WALL PANELS

In the vast majority of structures with breakaway wall panels observed by the BPAT, utilities
were improperly placed on, through, or adjacent to breakaway wall panels.

The BPAT observed electric meter boxes, telephone service boxes, cable TV boxes, sewer
service lines, and domestic water service feeds all mounted on breakaway wall panels (see Figures
2-27 and 2-36). Utilities placed through breakaway wall panels included telephone and cable TV
lines, the electric feed from the back of the meter box to the electric panel box, and water service
feeds (see Figure 2-37). Under the effects of flood forces, these utilities either were torn out or
prevented breakaway wall panels from breaking away cleanly. Another deficiency observed was the
placement of utilities adjacent to or near breakaway wall panels (see Figure 2-38). These utilities
were damaged when flood forces caused the panels to break away.
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Figure 2-35 Air conditioning / heat pump compressor platform leaning because scour caused loss of
two supporting posts.
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Figure 2-36 Example of utilit component (electric panel box) instaUed on a oreakaway waU panel.

2-30 
SITE OBSERVATIONS

2-30 SITE OBSERVATIONS



Figure 2-37 Utility components (dryer vent, air conditioning compressorfeed line, main electrical
service line out of meter box, and electric wiring) penetrating breakaway wall panel.

Figure 2-38 These utility components (wiring, electric panel box, ductwork, and sewer line) were
installed adjacent to breakaway wall panel and were damaged when the walls broke away.
Note broken sewer line riser pipe on seaward side of piling.
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2.6.3 PLACEMENT OF UTILITIES ADJACENT TO VERTICAL SUPPORT MEMBERS

Utilities on the vast majority of structures were found to be in locations exposed to velocity
flow and debris impact, e.g., mounted to vertical foundation members on sides other than the
landward side (see Figure 2-38). Utilities installed on the landward side of vertical foundation
members generally survived since the foundation member shielded them from velocity flow and
debris impact

2.6.4 SEPTIC TANKS

Septic tanks installed near oceanfront homes were often left exposed by storm-induced
erosion and scour (see Figure 2-39). Occasionally, thin-walled septic tanks made of precast
concrete rings were observed to have become waterborne debris. Concrete ring sections were
found dislodged and under elevated structures (see Figure 2-17). When a tank was exposed, the
sewer line from the home was usually severed. On many exposed tanks there were openings
where the access lid was missing and where the connection to the sewer line from the house was
exposed when the pipe broke away. The openings allowed sewage to leak out and flood water and
debris to enter the tank. Homes that were otherwise not significantly damaged had been posted
"Unoccupiable" by the local building official because of the lack of an operating sanitary disposal
system.

The State of North Carolina has established regulations concerning the installation of septic
tanks and leach fields in areas subject to coastal flood hazards. When a new building is
constructed, the tank and leach field must be installed on its landward side. When repairs to an
existing septic system located on the seaward side of a building become necessary for any reason,
the tank and leach field must be moved to the landward side of the building.

Figure 2-39 Oceanfront erosion and scour unearthed and damaged septic tanks and systems. Note
precast ring section and precast tank.
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2.7 DRY FLOODPROOFING IN COASTAL A ZONES
One unusual building in Wrightsville Beach is worth noting. The building is a slab-on-grade

hotel that was renovated several years ago. During the renovation of the conference rooms, the
owner reconstructed the exterior walls to make them watertight and installed tracks in the door
openings for the placement of removable flood shields (see Figure 2-40). The flood shields were
approximately 3 feet high and were manufactured by a firm that specializes in producing flood
shields. Each shield was equipped with a pneumatic gasket that could be inflated to seal the gap
between the track and the edge of the shield (see Figure 241). Construction of a solid masonry
wall inside the exterior walls of the conference rooms completed the floodproofing.

The BPAT interviewed the hotel manager and engineer during the site investigation. Both
were directly involved in the renovation of the hotel. Both said that the floodproofing was worth
the effort but that they wished the shields had been 1 foot higher. While the shields prevented the
storm surge from entering the protected area, some water splashed over the tops of the shields.
The water that passed over the top flooded the conference rooms to a depth of 4 inches. It
damaged the carpeting and mildewed the wall paper. However, in the remaining portions of the
hotel, which were not floodproofed, the depths of flood waters reached 18 inches. In these areas,
the water damaged the sheetrock and left over 2 inches of sand on the floor. Both the manager
and the engineer stated that keeping sand out of the conference area was, in itself justification
for the expense of the floodproofing.

Figure 2-40 Engineered flood shield installed over opening to large dry floodproofed commercial
building.
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Figure 2-41 Buildings that are floodproofed require extensive engineering detailing. Note that this
flood shield is sealed with a pneumatic gasket.

Although flood shields and other elaborate floodproofing measures can be quite effective, they
often require extensive human intervention to function properly (see Figure 2-42). It should be noted

that very few floodproofed buildings in coastal A zones are known to be subject to wave action.
Floodproofing in areas known to be subject to wave action presents special challenges that must be

addressed in the design, installation, and operation of the components of the floodproofing system.

Figure 2-42. Dry floodproofing often requires extensive human intervention. Note the detailed
instrutions affixed to this flood shield.
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2.8 WIND DAMAGE
Although the BPAT focused on flood damage, the team also observed wind damage to many

buildings. Porch roofs and large overhangs often failed because of poor connections, particularly
base and roof connections of support columns. Porch and overhang failures often caused severe
damage to otherwise well-connected main roofs. An additional contributor to observed wind
damage was the failure of corroded metal connectors.

2.9 CORROSION OF STRUCTURAL METAL COMPONENTS
The BPAT continued to see a trend toward the increased use of partially exposed metal

structural components, such as hurricane straps and clips, stamped metal plates on floor
diaphragm trusses, and manufactured home and RV tiedowns (see Section 2.3.8), in coastal
structures. With this trend, comes a trend toward an increase in the observed corrosion of these
components. Components that are partially exposed, i.e., those that are exposed to direct contact
with ambient exterior air but not cleansing rainfall, continued to show the highest rate of
corrosion.

Examples of such components are shown in Figures 243, 2-44, and 245. The presence of
rust indicates an obvious loss of galvanization on metal components observed in both oceanfront
and landward structures in the study area and may indicate that the connectors are nearing the
end of their useful life.

As noted in Section 2.8, the team observed wind damage to some structures that was due in
part to the failure of corroded metal connectors.

2.10 CONCERNS REGARDING THE EFFECTIVE FIRMS
FOR NORTH CAROLINA COASTAL COMMUNITIES

Throughout the damaged oceanfront area, the effective FIRMs for the affected communities
do not account for the effects of dune erosion, wave setup, or wave runup. Prior to Hurricanes
Fran and Bertha, the V-zones were located on the ocean beach, well seaward of building locations.
Oceanfront dunes were identified as B and C zones, outside the influence of 100- and 500-year
flooding. Fran caused severe erosion in the oceanfront row of buildings and allowed waves greater
than 3 feet high to extend several rows of buildings farther landward. Smaller waves swept the
entire barrier island in many locations.

In addition to the false sense of safety that results when erosion is neglected, the FIRM
deficiencies allowed finished underhouse enclosures in oceanfront B and C zones to be
constructed on slab foundations not supported by the piling foundation. In areas like Kure
Beach, erosion and wave damage caused significant damage to the finished enclosures. Without
the application of FEMA models for dune erosion, wave setup, and wave runup, the wave model
used in the preparation of the existing FIRMs underestimates the wave heights above the
stillwater elevations. This results in BFEs that are lower than those needed to avoid wave damage
to coastal construction.

[Editor's note: FEMA Region IV in Atlanta has issued advisory flood hazard maps for several
communities severely impacted by Hurricane Fran and has begun the preparation of revised
FIRMs. The communities have adopted the advisory maps and will use them until FEMA issues
the revised FERMs.]
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Figure 2-43 Corrosion of galvanized floor truss plates was observed in many buildings.

Figure 2-44 Corrosion of galvanizedfloor truss plates was observed in many buildings. Note that
painting does little to slow the process of corrosion in coastal environments
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Figure 2-45 Corrosion of hurricane straps and steel plates was also observed in many locations.

2.1 1 BUILDING PERFORMANCE SUCCESSES

The shift in construction from low floor elevation with shallow footings to elevated piling
foundations with underhouse parking, as described in Section 1.3.1, significantly reduced the
flood damage to buildings landward of any erosion. Where not subject to erosion, second row
and more landward buildings on pilings consistently survived wave heights of at least 3 feet and
overwash deposition of up to 3 feet of sand under the building. The use of 8-inch x 8-inch square
pilings embedded 8 feet below grade was successful in protecting landward three-story buildings
elevated up to 10 feet above grade. Outside of areas impacted by erosion, the BPAT did not
observe a single piling failure. Since most landward building sites in the beach communities are
not subject to erosion, the piling standards initiated by the by the State Building Code in the
1960's were extremely successful. However, underhouse non-load-bearing enclosures below the
elevated floor were regularly flooded and when used as finished living space were often severely
damaged.

The shift in the State Building Code to require longer pilings for erosion-prone buildings
along the ocean was generally successful. As noted by W-C (see Appendix C), of the 205 post-1986
oceanfront structures on Topsail Island, over 90 percent sustained no significant foundation
damage. Only a few were seriously damaged or destroyed. In comparison, adjacent oceanfront
houses on shallow pilings were often destroyed when the foundation was undermined by erosion.
The current requirement is for piling embedments to -5.0 feet m.s.l. or 16 feet below grade,
whichever is less. As noted in Section 2.3.1, the natural grade on most of the eroded lots was
relatively low, allowing the -5.0-foot m.s.l. requirement to control the design. In those conditions,
the piling standard was usually adequate. However, on higher dunes where the requirement for
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16 feet below grade applies, the required depth is too shallow to keep buildings stable after
erosion of the dune and beach profile.

It is also important to note that the BPAT observed few situations in which the performance
of breakaway walls below an elevated building may have resulted in structural damage to the
building. Successful building performance during Hurricane Fran also demonstrates the value of
compliance with elevation and setback requirements, the use of flood-resistant construction
materials and techniques, such as in engineered concrete buildings, and compliance with other

coastal design and construction requirements (see Figures 246, 247, and 248).

Beach nourishment with construction of a hurricane protection dune substantially reduced
damage in Wrightsville Beach and Carolina Beach. In these areas, the manmade dune eroded but

prevented erosion failures and reduced wave damage to structures. Such dunes are considered
expendable but require periodic maintenance and replacement after the worst storms.

Figure 2-46 While this house experienced 6 feet or more of vertical erosion and scour, as well as the
loss of breakaway wall panels, the foundation and superstructure performed as designed.
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Figure 2-47 As shown by this post-Fran photograph taken at Emerald Isle, North Carolina, proper
elevation and setback from the oceanfront in conjunction with substantial protection
afforded By dunes resulted in little or no flood damage to the oceanfront row of buildings.

Figure 2-48
This large, engineered oceanfront
structure performed as designed.

BUILDING PERFORMANCE ASSESSMENT: HURRICANE FRAN IN NORTH CAROLINA 2-39



Recommendations
3.1 BUILDING FOUNDATION SYSTEMS

3.1.1 PILING EMBEDMENT FOR STRUCTURAL SUPPORT

It is critical that coastal foundations be designed to survive the anticipated amount of
erosion and scour. Erosion and scour combine to impact coastal piling foundations in three
distinct ways. First, in the absence of cross-bracing, the loss of soil adjacent to a thin vertical
foundation member results in a longer unsupported length. The increase in unsupported length
allows for greater deflection of the vertical member. Second, the loss of soil adjacent to pilings
leaves less soil to counteract lateral loads applied to the pilings by the structure above, the velocity
flow of the storm surge, wave action, and debris impact. Third, pilings, which rely on friction
between the piling and the adjacent soil to transfer loads into the ground, lose some of the
resisting friction when the adjacent soil is eroded and scoured. The loss of friction reduces the
ability of the piling to resist uplift loads from wind.

For the concerns discussed above to be adequately addressed, designs of coastal foundation
systems must account for the conditions expected to occur during the base flood (100-year flood)
and long-term erosion for the life of the building. The following documents offer guidance to
designers of coastal foundations:

* The ASCE standard ASCE 7-95, Minimum Design Loads Building and Other Structures. The 1995
version of this standard includes, for the first time, criteria for determining flood loads
(Chapter 5) and for combining flood and other loads to determine combined load factors
(Chapter 2) for buildings that experience simultaneous wind and flood loads. This standard
is available from ASCE. Portions, if not the whole standard, may well be incorporated by the
model building code organizations into future versions of model building codes. This standard
also meets, or exceeds, the minimum requirements of the NFIP for determining loads.

* The ASCE standard Flood Resistant Design and Construction Practices. This standard is currently
in development and should be completed in 1997. It will be available from ASCE. This new
standard will provide descriptive as well as prescriptive requirements regarding the design
and construction of buildings that are to be located in floodprone areas. The draft of this
standard presents the recommendations of some of the Nation's leading experts in coastal
construction and meets or exceeds the minimum requirements of the NFIP.

* FEMA's Coastal Construction Manual (FEMA 55). This document provides further guidance
on coastal foundation systems. It recommends that pilings be embedded to a depth of-10
feet m.s.l.

* FEMA's Technical Bulletin No. 5, Free of Obstruction Requirments for Buildings Loated in Coastal
High Hazard Areas. This document provides information on NFIP-compliant design and
construction practices that can prevent damage to coastal buildings caused by below-
building obstructions.

The BPAT recommends that in the absence of State or local requirements based on detailed
engineering studies or the historical performance of coastal buildings subjected to base flood
conditions, pilings for structures in areas subject to erosion and scour be embedded to -10 feet
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m.s.l. In areas with terminating strata that inhibit erosion and scour, and areas with rocky

shorelines, foundation systems with shallower depths may be justified.

The findings of the W-C study suggest that in coastal areas of North Carolina where the

ground elevations are at or below 11 feet m.s.l. the current requirements of the State Building

Code regarding piling embedment depth may have been adequate to prevent foundation failure
during Hurricane Fran. However, given the limitations of that study (as discussed in Appendix C),

and the anticipated revisions to BFEs for North Carolina coastal communities as discussed in

Section 2.10 of this report, it may be appropriate for the state to consider the need for piling

embedment depth requirements more stringent than those in its current Code. These issues are

discussed below.

All of the structures tested by W-C were located where the ground elevation was 11 feet m.s.l.

or less. To meet the applicable code requirement, the pilings for these structures had to be

embedded to a minimum of -5 feet m.s.l. In areas where the grade is greater than 11 feet m.s.l.,

pilings will meet the State Code if they are embedded 16 feet below average original grade. As a

result, the bottoms of the pilings in these areas will be above -5 feet m.s.l. This embedment depth

may not be sufficient for structures built on or directly behind frontal dunes, where extensive

erosion and scour can cause the loss of the entire dune or remove so much of it that piling
support becomes inadequate. There are areas within the state where this situation can occur. For

structures in these areas, the state may want to consider revising the Code to require that piling

embedment depth be -5 feet m.s.l. or 16 feet below grade, whichever is greater.

As noted in Section 2.10, FEMA is preparing revised FIRMs for several North Carolina

communities affected by Hurricane Fran. Because the revised FIRMs are expected to include BFEs

higher than those shown on the current FIRMs, new structures and substantially damaged structures

that are reconstructed will have to be elevated higher to meet minimum NFIP requirements. As a

result, these structures may be subject to different wind and flood loads than structures built

previously, when lower elevation requirements applied, and increased piling embedment may be

necessary.

In addition, the findings of the W-C study suggest that the State of North Carolina needs to

emphasize the importance of inspection and code enforcement to ensure that all structure pilings

meet current and any future Code requirements.

3.1.2 PILING FOUNDATIONS FOR DECKS, PORCHES, AND ROOF OVERHANGS

The design criteria for vertical foundation members for building extensions such as porches,

decks, and roof overhangs must be equal to those for the foundation system of the main structure.

OCEANFRONT RESIDENTIAL BUILDINGS

The vertical foundation members for decks, porches, and roof overhangs must be designed

and constructed to maintain their ability to support the structure above. These building

extensions are often on the ocean side of oceanfront structures, where they are exposed to

amounts of storm surge, velocity flow, wave action, vertical erosion, and localized scour at least as

great as those that affect the main structure. The foundation requirements for these building

extensions should never be less stringent than those for the building itself. Because of the damage

caused to the main structure when building extensions collapse and the debris they generate

once they collapse, they should not be considered sacrificial. The only exceptions would be

stairways and narrow walkways required for building access.

In areas subject to erosion and scour, embedment of vertical foundation members for

building extensions should be based on a depth related m.s.l., not a depth below existing grade.
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The BPAT recommends that in these areas, the requirements applied to the main building
support system also be applied to the piling foundations for decks, porches, and roof overhangs.
This recommendation is based on the observed performance of coastal buildings in many
hurricanes, including Hurricane Fran.

LANDWARD RESIDENTIAL BUILDINGS

In landward areas also, vertical foundation supports for building extensions such as decks,
porches, and roof overhangs should meet the same requirements applied to the main building
support system. In areas not subject to erosion but subject to localized scour, embedment of these
foundation members may be based on a depth related to existing grade. From the observed
performance of landward coastal buildings and building extensions, the continued use of an
embedment depth of 8 feet is recommended for all vertical foundation members.

3.1.3 GRADE OF LUMBER USED FOR TIMBER PILINGS AND CROSS-BRACING

The requirements of the North Carolina State Building Code regarding the quality of wood
materials used in the construction of residential building foundations, including wood piles and
dimensional lumber, are set forth in Section R-309 of the Code. Section R-309 specifically
addresses protection against decay. It states that all pressure-treated wood foundation members
must bear the quality mark of a quality control inspection agency for pressure-treated wood that
has been approved by the State Building Code Council. It does not contain any explicit
requirements regarding grades of lumber used for vertical foutdation members or cross bracing.
Contractors and inspectors must therefore depend on their judgment in determining acceptable
grades of lumber for these applications. To help avoid situations in which foundation strength is
compromised by the use of lower-quality wood materials (as depicted in Figure 2-20), the State
should consider amending the Code to include prescriptive language regarding the grade of
wood materials used for vertical members and cross bracing in structure foundations.

3.1.4 PROPER ELEVATION OF COASTAL BUILDINGS

Buildings constructed in Coastal High Hazard Areas (V zones - as shown on NFIP FIRMs)
must be elevated so that the lowest horizontal structural member of the lowest floor is at or above
the BFE and the area below the building is free of obstructions. These requirements are intended
to allow velocity flows and waves to pass freely under the building. When a building in a V zone
meets these requirements, its lowest floor is usually 12 inches or more above BFE, because of the
thickness of the floor diaphragm and the supporting beams. FIRMs for coastal communities
usually show A zones landward of V zones. In A zones, a building's lowest floor must be elevated
to or above the BFE, and areas below the BFE may contain obstructions. In B, C, and X zones, no
elevation requirements apply.

The practice of elevating buildings on open foundations and ensuring that the lowest
horizontal structure member is above the BFE was widely used in A, B, C, and X zones on the
barrier islands impacted by Hurricane Fran. Homes in these zones were often elevated 8 to 9 feet
on embedded piling foundations to allow below-building parking and storage. This practice
undoubtedly resulted in much lower damages than would have occurred if the lowest floors of
these homes had been elevated to the BFE in A zones and not elevated in B, C, and X zones. The
practice of requiring V zone construction standards in coastal A zones exceeds NFIP minimum
requirements. Coastal A zones subjected to velocity flow and wave action are not distinguished
from other A zones on FIRMs. Communities on barrier islands may want to consider adopting
stricter standards in areas of known high coastal hazard, whether or not they are currently
identified as V zones.

BUILDING PERFORMANCE ASSESSMENT: HURRICANE FRAN IN NORTH CAROLINA 3-3



A building elevated so that its lowest floor is above BFE can qualify for an extremely
favorable flood insurance rate. Rates for buildings in both Zone A and Zone V are lowered
incrementally for each 1-foot increase in the height of the lowest floor above the BFE, up to a

maximum of 4 feet. For buildings at this height, the rate reduction is 33 percent in Zone A and 60

percent in Zone V. Rate reductions are justified because a building that exceeds the minimum
elevation requirements generally has a low risk of being significantly damaged by flooding.
Therefore, in the design process for a new building, elevating above the BFE is well worth

considering. Local insurance agents can provide information concerning the flood insurance
rates associated with elevating above the BFE.

3.1.5 CROSS-BRACING BELOW ELEVATED BUILDINGS

Whenever possible, piling foundations should be designed to withstand simultaneous wind

and flood loads without the use of cross-bracing. Alternatives to cross-bracing that may provide

the necessary stability include incorporating a structural, unroofed deck into the building design

to increase the building footprint; using pilings that are larger, longer, or both; and reducing
piling spacing. When cross-bracing is necessary, its use should be minimized to the extent

possible, especially where it would be perpendicular to velocity flow, wave action, and debris

impact. Whenever cross-bracing is used, regardless of its orientation, it must be designed to

withstand the anticipated wind and flood loads.

3.1.6 SOLID PERIMETER MASONRY FOUNDATION WALLS SUPPORTED ON A
CONTINUOUS FOOTING

The use of solid perimeter foundation walls in coastal flood hazard areas should be

scrutinized carefully. Since these foundations create large obstructions to velocity flow and are

usually backfilled with the native sandy material, they are extremely susceptible to extensive
localized scour. This condition was observed to have occurred even in overwash areas where

accretion of sand occurred. Scour occurred where the velocity flow was disrupted at the seaward

face of the obstruction and where the flow reconverged at the landward face of the obstruction.

Only where an engineering analysis of potential scour has been completed by a professional

engineer should coastal communities consider allowing solid perimeter wall foundation systems

in landward areas subject to high-velocity flow. Engineering solutions to this problem could

include backfilling the foundation excavation with soil that is resistant to scour and installing the

footing at a depth that is below the expected depth of scour (see Figure 3-1). The preferred solution

is to construct piling foundations in landward areas subject to high-velocity flow. Of course, solid

perimeter walls should never be used in oceanfront areas and are not permitted in V Zones.

3.1.7 MANUFACTURED (MOBILE) HOME AND PERMANENTLY INSTALLED RV
FOUNDATIONS

Manufactured (mobile) homes and permanently installed RVs are usually supported on dry-

stack masonry foundations. When manufactured homes and RVs are installed, steps should be taken
to protect them from the damage caused by foundation collapse due to scour, anchor strap failure

due to corrosion, and anchor strap pullout due to the use of the wrong size or type of anchor.

Protecting the foundation from localized scour requires either controlling scour or providing a

foundation that extends to a depth that is below the expected depth of scour. For example,
controlling scour may involve excavating the area under the footprint of the home and replacing
the excavated soil with a non-scourable soil or installing a geotextile fabric beneath the home. If a
fabric is installed, it must be keyed-in around the edges so that the scour will not undercut the
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Figure 3-1 Deepeningfoundation to account for scour

fabric. Providing a deep foundation can be done at minimal expense. A power-driven auger can be
used to drill holes to a depth that exceeds the depth of the scour. The augured holes should be at
least 1 foot in diameter and should exceed the expected scour depth by at least 1 foot. The deep
foundation can consist of a wood post or cast-in-place concrete footing.

Metal straps used to tie down manufactured homes and RVs can become loose over time. In
coastal areas, metal straps are also subject to higher rates of corrosion. Loose or corroded straps
exposed to the loads imposed by high winds and flood waters are prone to failure, which can lead
to damage to the foundation and home. It is critical that straps be checked periodically for both
proper tension and corrosion. Checks for tension should be made frequently throughout the
hurricane season and are especially important after high-wind events. All loose straps should be
tightened according to the manufacturer's specifications. Straps that show visible signs of
corrosion should be replaced. In coastal areas, metal straps have been shown to exhibit signs of
corrosion after 3 to 5 years of exposure.

Pullout of anchors to soil saturation can be minimized through the use of the proper size
and type of anchor. Anchors used in sandy soils prone to saturation by flood waters must either be
long enough that the helical plates extend to a depth below the saturated soil, into soil that can
resist anchor pullout, or be designed to work properly in saturated soil. In coastal areas subject to
high-velocity flow that have loose to medium-dense sands and other granular soils, anchors should
be at least 4 feet long and 3/4 inch in diameter and should have helical plates at least 6 inches in
diameter. Major anchor manufacturers provide guidelines for selecting and installing the
appropriate anchor according to the size of the home, the soil type at the installation site, and
other conditions that can affect anchor performance. The manufacturer's specifications and
recommendations should always be followed in the selection and installation of anchors.
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To minimize the impact of tidal surge on manufactured homes and their foundations, it is
recommended that in all Special Flood Hazard Areas subject to coastal flooding, including A
zones, manufactured homes be elevated such that the bottom of the lowest horizontal structural
member of the lowest floor is at or above the BFE. This means that the bottoms of the chassis I-
beams would be at or above the BFE.

3.2 BREAKAWAY WALLS BELOW ELEVATED BUILDINGS
When an area below an elevated building is enclosed with breakaway wall panels, special

care should be taken to ensure that the placement and attachment of the panels does not
interfere with the ability of the panels to break away when acted on by flood forces.

3.2.1 PLACEMENT OF EXTERIOR SHEATHING OVER PILINGS

Exterior sheathing attached to breakaway wall panels must not extend over the vertical
foundation members. This also applies to wire mesh used in exterior stucco systems. There
should be a free and clear joint between the panels and vertical foundation members so that
unnecessary lateral loads are not transferred to the foundation (see Figures 3-2 and 3-3). FEMA's
Coastal Construction Manual provides guidance on how to fabricate wood-frame, metal-frame, and
masonry breakaway panels.

COLUMN
/~ OR PILE

BREAKAWAY WALL FRAMING

<- TOP PLATE

11

GAP
NONSTRUCTURAL
SHEATHING

TOP VIEW

Figure 3-2 Recommended practicefor breakaway wall sheathing.
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For fastener schedule,
refer to Coastal
Construction Manual
(FEMA 55), February
1986, Table A-11
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Figure 3-3 Recommended breakaway wall attachment.
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3.2.2 IMPROPER ATTACHMENT OF BREAKAWAY WALL PANELS TO FOUNDATION

MEMBERS

The attachment of breakaway wall panels to surrounding surfaces should be done in such a

way that the panels will safely resist wind loads but break away under coastal flood loads (see

Figure 3-3). Local building codes provide information on applicable wind loads that building

components must resist. FEMA's Coastal Construction Manual provides guidance on how to

properly attach breakaway wall panels.

3.2.3 PLACEMENT OF BREAKAWAY WALL PANELS SEAWARD OF CROSS-

BRACING

As a matter of practice, breakaway walls should never be installed immediately seaward

of cross-bracing. This practice exposes the cross-bracing to lateral loads that far exceed

those that 2x bracing is able to resist. In most instances, an alternative is to install

latticework or move cross-bracing away from breakaway wall panels, into an interior area.

3.3 BELOW-BUILDING CONCRETE SLABS

When a slab-on-grade is constructed below an elevated building, it should be designed

and constructed in such a way that it will not damage the building foundation when acted

on by flood forces. Issues requiring special consideration include the thickness of the slab,

slab joints, and construction practices that are not appropriate for coastal flood hazard areas

subject to erosion and scour.

3.3.1 SLAB THICKNESS

Slabs below elevated buildings in areas subject to erosion and scour should be no thicker

then 4 inches. Thicker slabs present two problems: they are harder to break into small pieces

and each piece weighs more per unit of surface area than a same-sized piece of a thinner slab.

3.3.2 SLAB JOINTS

Of the three types ofjoints described in Section 2.5.2, contraction joints are the most

important for ensuring the frangibility of below-building slabs. As shown in Figure -4,

contraction joints should be cut into the surface of the slab from piling to piling in both

directions across the entire slab. Expansion and isolation joints should be installed as

appropriate in accordance with standard practice or as required by State and local codes.

3.3.3 WIRE MESH

Wire mesh retards the ability of the slab to break apart and therefore should not be used.

3.3.4 CONNECTING THE SLAB TO THE VERTICAL FOUNDATION MEMBERS

Slabs should never be connected to vertical foundations members when the slab is

underlain by granular soil in areas subject to erosion and scour. This practice unnecessarily

threatens the stability of the foundation system of elevated buildings.
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PRACTICE OR AS REQUIRED BY STATE AND LOCAL CODES.

Figure 3-4 Recommended contraction joint layout for frangible slab-on-grade below elevated
building.
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3.3.5 CASTING CONCRETE GRADE BEAMS AND SLABS-ON-GRADE
MONOLITHICALLY

Grade beams and slabs-on-grade should never be cast monolithically in areas subject to erosion

and scour. In these areas, grade beams must be designed to be self-supporting (to account for the

loss of supporting soil from erosion and scour) and to withstand velocity flow and debris impact as well

as stiffen the foundation system. All slabs-on-grade must designed to act separately from grade beams.

3.3.6 CONCRETE COLLARS

In areas subject to erosion and scour, concrete collars should not be placed around

foundation pilings.

3.4 ON-SITE UTILITY SYSTEMS
On-site utilities need to be installed with much greater attention to the effects of flooding. In

some cases, such as placement of electrical meters, installation will need to be coordinated with

local public utility companies. Installation of other items, such as septic systems, may fall under

the purview of local or State health departments.

3.4.1 AIR CONDITIONER / HEAT PUMP COMPRESSOR PLATFORMS

Platforms that support air conditioner / heat pump compressors must be designed to

withstand the forces associated with the base flood. In a coastal floodplain, the best way to avoid

damage to these platforms is to employ the method used for the protection of buildings -

elevation. Therefore the bottom of the lowest horizontal structural member of the platform

should be elevated to or above the BFE. Ideally, platforms should be cantilevered from an

elevated floor diaphragm (see Figure 3-5). An alternative is to support the platform partially or

completely on pilings (see Figure 3-6).

Platforms designed and constructed with vertical foundation members must be protected

from localized scour and, in oceanfront areas, protected from erosion so that the foundation

members can resist the velocity flow, wave action, and debris impact found in coastal areas. When

a vertical foundation member looses it ability to support the platform, the platform collapses,

becoming waterborne debris that is then carried into the structure or nearby structure. Because

of the cost of the compressor (often $2,000 and up), the potential loss of habitability when the

compressor is rendered inoperable, and the debris that platforms generate once they collapse,

these platforms cannot be considered sacrificial.

Vertical foundation members for compressor platforms in landward areas should meet the

same requirements as the main building support system. In areas subject to scour, embedment of

these foundation members should be based on a depth related to existing grade. From the

observed performance of oceanfront buildings, an embedment depth of -10 feet m.s.l. is
recommended for all vertical foundation members for oceanfront buildings. From the observed

performance of landward coastal buildings, an embedment depth of 8 feet below existing grade is

recommended for platform vertical foundation members. These recommendations are

considered prudent in the absence of specific State and local requirements.
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Figure 3-5 Cantilevered mechanical platform.

Figure 3-6 Mechanical platform supported by pilings.
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3.4.2 PLACEMENT OF UTILITIES ON, THROUGH, OR ADJACENT TO BREAKAWAY

WALL PANELS

Utility services should never be placed in a such a manner that they can be damaged when a

breakaway wall panel breaks away or in such a way that they will interfere with the function of the

breakaway panels. As noted in Section 2.6, the BPAT observed numerous types of utility system

components mounted on or adjacent to breakaway wall panels. This practice is unacceptable and

almost always results in the utility components being severely damaged during a hurricane. The

BPAT also observed utility lines penetrating breakaway wall panels. This practice is also

unacceptable. When it becomes necessary to extend these lines through a wall panel, a utility

blockout, as shown in Figure 3-3, should be built into the wall.

3.4.3 PLACEMENT OF UTILITIES ADJACENT TO VERTICAL SUPPORT MEMBERS

Utilities installed on the landward side of vertical foundation members are shielded by the

foundation members against damage from velocity flow and debris impact. Service connections

such as electrical meters, telephone junction boxes, and cable junction boxes that must be

exposed to flooding should be placed on the landward side of the most landward vertical

foundation member (see Figure 3-7). Vertical utilities such as sewer and water risers should also

be placed on the landward side of vertical foundation members.

3.4.4 SEPTIC TANKS

Septic tanks should be installed as far landward as practical and permitted by the authority

having jurisdiction. Before septic tanks are installed, local and State Health Departments having

regulatory control should be consulted concerning whether such tanks are permissible and how

and where they should be installed.

3.5 DRY FLOODPROOFING
The NFIP regulations do not permit the use of dry floodproofing in Coastal High Hazard

Areas (V zones), which are subject td deep flooding, high-velocity flow, debris impact, and wave

heights. The regulations do allow nonresidential buildings in A zones, including coastal A zones,

to be dry floodproofed through the construction of walls that are substantially impervious to the

passage of flood waters. Dry floodproofing in coastal A zones, however, presents special

challenges. Although the potential for high-velocity flow, debris impact, and wave action in coastal

A zones is significantly less than in V zones, it still must be assessed and accounted for in the dry

floodproofing design.

Studies performed by the U.S. Army Corps of Engineers (COE) National Flood Proofing

Committee, found in the COE publication Fodproofing Tests, 1988, indicate that dry

floodproofing can be used in areas that experience flooding to a depth of 3 feet. The COE did

not study coastal effects, including wave action. Wave action, especially waves breaking on the

vertical dry floodproofing components, will add significant loads to the floodproofing system.

Therefore, it is recommended that dry floodproofing be used in coastal floodplains only

where the stillwater depth is no more than 2 feet above grade during the base flood. Where the

stillwater depth is 2 feet, the wave crest elevation will be approximately 1 foot above the stillwater

elevation, and wave breaking and overtopping will reach even higher. To protect a building from

wave overtopping where the stillwater depth is 2 feet, 4 feet of dry floodproofing is recommended

(see Figure 3-8). In no case should the increase in floodproofing height be used to compensate

for higher stillwater depths without a detailed engineering analysis.

3-12 RECOMMENDATIONS



TOP VIEW OF SLAB

ELEVATED_
BUILDING

OCEAN FRONT

PILING/COLUMN -

I SECURE WITH CORROSION-RESISTANT STRAPSPNIR/ OR ANCHORS (2' ON-CENTER MAXIMUM)

<l400 SEWER

OR

nRISER
= ~SEWER OR_

a_~WATER RISER

I I\ \ CORROSION-RESISTANT
I I _ _ " _J _ STRAP; WRAPAROUND PIPE1 --t iCUT SECTIONTHROUGH PILING/COLUMN

SIDE VIEW OF
PILING/COLUMN

Figure 3-7 Proper location of utilities.
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Figure 3-8 Dry floodproofing in coastal A zones.

Dry floodproofing is normally designed for velocity flows that do not exceed 10 feet per

second. Velocities up to 10 feet per second can be converted to an approximate equivalent

hydrostatic head (see FEMA 259: EngineenngP'inciples and Pradicesfor RerfittingFlood Pone

Ridential Budings). In the case of structure subjected to a 2-foot stillwater flood depth, a velocity

of 10 feet per second can be converted to an approximate increase of 1 foot of flood depth. This

provides furtherjustification for restricting floodproofing to coastal structures that are subject to

no more than 2 feet of stillwater flooding. For additional information on proper floodproofing

design and construction criteria, see FEMA 259, EngineenngP inaples and Pmrcicesforetmfitting

FloodProne ReMential Structures, and FEMA's Technical Bulletin No. 3, Non-Resident"icFloodpmofing

- Rquirements and Certification.

3.6 WIND DAMAGE PROTECTION
The observed wind damage to porch roofs and large overhangs can be avoided in the future

through the use of easily implemented and inexpensive retrofits, such as the addition of
corrosion-resistant metal connectors at critical locations. Revising the State Building Code to

include construction details for top-of-column and bottom-of-column connections would help

ensure that future construction is better able to resist high winds.
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3.7 PROTECTION OF METAL STRUCTURAL COMPONENTS
FROM CORROSION

Maintaining the design strength of all structural components is critical. Any loss of strength
can lead to structural failure during subsequent hurricanes. FEMA recently issued NFIP Technical
Bulletin No. 8, Comsion Proectionfor Metal Gonnedtom in CastalAreas, which provides guidance
concerning the selection, installation, and maintenance of metal connectors such as truss plates
and hurricane straps.
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Flood DamageAssessment Report: Tropical Storm AllisonJune 1990

Flood DamageAssessment Report: Noreaster of April 1990,June 1990

Flood Damage Assessment Report: RiverineFlooding in Central Kentucky, February 1990
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BUILDING PERFORMANCE ASSESSMENT: HURRICANE FRAN IN NORTH CAROLINA A-1



Flood DamageAssessmentReport: RiverineFloodingin MaineJune 1988

Flood Damage Assessment Report: Noreaster, Mid-Atlantic Coast, April 1988

Flood Damage Assessment Report: RivenneFloodingin Central Michigan, May 1987

Flood Damage Assessment Report: Riverine Flooding in Allegheny County, Pennsylvania, January 1987

Flood Damage Assessment Report: RiveinneFlooding in Clive, Iowa, September 1986

Flood Damage Assessment Report: Hurricane Gloria, February 1986

ImprovingResistance of Buildings to Wind Damage: HurricaneElena; September 1985

Hazard Mitigation Team: Hurricane Diana, 1984

Proposed Changes to Building Codes in Response to Hurrcane Alicia, August 1983
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Hazard Mitigation Report: HurricaneFredefir, September 1979
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EXECUTIVE SUMMARY

PURPOSE

As a result of Hurricane Bertha (July 12, 1996) and Hurricane Fran (September 5, 1996), a
large number of structures were damaged on Topsail Island, North Carolina. Topsail Island
includes the communities of Topsail Beach, Surf City, and North Topsail Beach. An initial review
of the structures indicated that shallow embedment depth of their foundation pilings could have
been the primary cause of structural failure due to the storms. FEMA contracted with Woodward-
Clyde Federal Services (Woodward-Clyde) to perform testing and evaluation of the piling lengths
and embedment depths. The purpose of the testing was to determine whether the pilings meet
the embedment depth requirements of the current North Carolina State Building Code. The
current version of the Code was implemented onJanuary 1, 1986.

PROJECT EXECUTION

To identify oceanfront structures built after the implementation of the current Code
(January 1, 1986), Woodward-Clyde obtained aerial photographs for Topsail Island from the
North Carolina Department of Transportation. The photographs represent the periods
immediately afterJanuary 1, 1986, prior to Hurricane Bertha, after Hurricane Bertha, and after
Hurricane Fran. From these photographs, a total of 205 post-1985 oceanfront structures were
identified. Duplex or multiplex units (two- to four-family structures) were considered single
structures for purposes of this study.

Of the 205 structures, a total of 16 (7.8 percent) were identified as having leaning pilings (11
structures) or were identified as total losses (5 structures). Structures identified as total losses were
either completely washed away by the storm or were so severely damaged that the structures were
totally destroyed. Many of the 205 structures identified received other damage such as roof, wall,
deck, and concrete damage caused by both flooding and high winds. However, the focus of this
study was on damage to piling foundations that supported elevated residential one- to four-family
structures.

Field inspections of the 205 oceanfront structures were conducted to identify piling damage
and general building parameters. A total of 20 damaged and undamaged structures were initially
identified for piling testing. However, after homeowner approvals were requested and received, it
was determined that only 11 structures would be tested. These 11 structures include 7 structures
with leaning pilings and 4 structures with no leaning pilings.

TESTING PROCEDURES

Using a nondestructive test methodology to determine total piling length, Woodward-Clyde
tested 5 pilings at each structure, a sampling of approximately 25 percent. For the test,
accelerometers were mounted directly to each piling. The piling then was struck on its side with a
hammer. The hammer blow created dispersive stress waves that traveled the length of the piling.
Data recorded by the accelerometers were then digitally processed and analyzed. Analysis of the
data yielded a computation for the total length of the piling. Ground level and top-of-piling
elevations were surveyed and used to determine piling embedment depth.
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Typical accuracy using this type of testing is ± 10 percent. In three piling test cases, the
return signals recorded were not accurate enough to allow for a piling length determination.
Therefore, for 3 of the eleven 11 structures, only 4 instead of 5 pilings were tested, yielding a total
of 52 tested pilings.

PILING TEST RESULTS

The current North Carolina State Building Code requires that piling tips be at -5 feet m.s.l.
or 16 feet below grade, whichever is shallower. The findings of the tests are based on the
evaluation of the piling embedment depths in relation to the -5 feet m.s.l. criterion, since this,
rather than the 16 feet below grade criterion, is the controlling factor for piling embedment in
the test area. This is because pre-storm grade elevations for most oceanfront houses on Topsail
Beach were less than 11 feet m.s.l.

Of the 11 structures tested, 4 were one-story above the pilings and 7 were two or more stories
above the pilings. The following table summarizes the findings.

STORIES TOTAL PILING AVERAGE
ABOVE PILINGS NOT DIFFERENTIAL
TOP OF PILINGS CROSS PER MEETING TO MEET

NO. PILING LEANING BRACING STRUCTURE CODE CODE'
(FEET)

1 1 yes yes 21 4 of 5 0.9

2 1 yes yes 21 4 of 5 2.0

3 2 yes no 20 4 of 4 4.7

4 2 yes no 20 4 of 4 5.6

5 2 yes no 15 5 of 5 3.3

6 2 yes yes 15 4 of 4 4.2

7 2 yes yes 12 5of5 6.1

8 3 no no 30 2 of 5 3.4

9 2 no no 15 1 of 5 0.7

10 1 no yes 50 5 of 5 2.6

11 1 no no 25 5 of 5 4.7

'Average differential is the average distance from the tip of piling to -5 feet m.s.l.

Note: Information on the effects of erosion and scour is provided in the sections of the
report preceding this appendix.
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ONE-STORY STRUCTURES (TOTAL OF FOUR)

* Two had leaning pilings.

* Three had some bracing, although none is required by the current Code. The struc-
ture that had no cross-bracing was not damaged.

* Ninety percent of the pilings tested for these four one-story structures (both with and
without leaning pilings) did not meet the current Code requirement for piling embed-
ment depth.

TWO- AND THREE-STORY STRUCTURES (TOTAL OF SEVEN)

* Five had leaning pilings.

* Two of the five structures with leaning pilings had cross-bracing at the time of the
storm, but none of the structures had cross-bracing in accordance with the current
Code. The two structures that did not have leaning pilings had no cross-bracing. It
should be noted that the current Code allows for alternative bracing systems if they are
designed and sealed by a Licensed Professional Engineer or Architect.

* Including the pilings within the 10-percent accuracy range, 78 percent of the pilings
tested for the seven two-story structures (both with and without leaning pilings) did not
meet the current Code requirement for piling embedment depth.

The following table provides a breakdown of the number of pilings by the amount of
additional embedment depth necessary for the piling to meet the Code requirement. Of the 52
pilings tested (including those pilings within the 10-percent accuracy range), over 80 percent did
not meet the Code requirement.

ADDITIONAL DEPTH (FEET) NUMBER OF PILINGS
REQUIRED TO MEET CODE

0..

1-2.6

2-3.8

3-4.4

> 4.22

It was observed that all on the identified post-1985 structures that had leaning pilings, the
pilings leaned inland in a westerly direction (the direction of the storm surge) .
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CONCLUSIONS

From the field observations and test results, Woodward-Clyde concludes the following:

* Approximately 92 percent of oceanfront structures built after the implementation of
January 1986 Code changes did not sustain significant piling damage.

* All tested post-1985 structures that had leaning pilings did not meet the requirements of
the current Code. Of all the pilings tested, both leaning and not leaning, over 80 percent
did not meet the Code requirement.

* It appears that the Code requirement for piling embedment depth may be more effec-
tive in preventing piling damage than the requirement for cross-bracing. This includes
those pilings within the 10-percent accuracy range.

From the test results and the field observations, it appears that a structure should sustain
minimal piling damage if it is constructed according to the current Code requirements. However,
several factors exist that prevent a complete evaluation of the piling requirements in the Code:

* The study involved testing only 11 of 205 post-1985 oceanfront structures.

* The findings for the piles not meeting Code are limited to structures whose piling
embedment depth is controlled by the -5 foot m.s.l. criterion.

* The majority of the structures tested did not meet the embedment depth requirement of
the Code, including those that did not have leaning pilings.

RECOMMENDATIONS

For the reasons cited above, the relative effectiveness of the two embedment criteria, "tip
penetration of at least 5.0 below mean sea level or 16 feet below average original grade which ever
is least," cannot be made. Therefore, Woodward-Clyde can not recommend a change to the piling
embedment depth requirement of the North Carolina State Building Code at this time.
Woodward-Clyde does, however, recommend that better construction and inspection practices be
implemented to ensure proper installation of the pilings so that they at least meet the current
Code requirements.
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